Microfluidic mixing using contactless dielectrophoresis.
نویسندگان
چکیده
The first experimental evidence of mixing enhancement in a microfluidic system using contactless dielectrophoresis (cDEP) is presented in this work. Pressure-driven flow of deionized water containing 0.5 μm beads was mixed in various chamber geometries by imposing a dielectrophoresis (DEP) force on the beads. In cDEP the electrodes are not in direct contact with the fluid sample but are instead capacitively coupled to the mixing chamber through thin dielectric barriers, which eliminates many of the problems encountered with standard DEP. Four system designs with rectangular and circular mixing chambers were fabricated in PDMS. Mixing tests were conducted for flow rates from 0.005 to 1 mL/h subject to an alternating current signal range of 0-300 V at 100-600 kHz. When the time scales of the bulk fluid motion and the DEP motion were commensurate, rapid mixing was observed. The rectangular mixing chambers were found to be more efficient than the circular chambers. This approach shows potential for mixing low diffusivity biological samples, which is a very challenging problem in laminar flows at small scales.
منابع مشابه
A Microfluidic System for Biological Particle Enrichment Using Contactless Dielectrophoresis
201 Hadi Shafiee, John L. Caldwell, and Rafael V. Davalos* Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA Bioelectromechanical Systems Laboratory, Institute for Critical Technology and Applied Science (ICTAS), Virginia Polytechnic Institute and State University, Blacksburg, VA Bradley Department of Electrical and Computer Eng...
متن کاملModeling and development of a low frequency contactless dielectrophoresis (cDEP) platform to sort cancer cells from dilute whole blood samples.
Contactless dielectrophoresis (cDEP) devices are a new adaptation of dielectrophoresis in which fluid electrodes, isolated from the main microfluidic channel by a thin membrane, provide the electric field gradients necessary to manipulate cells. This work presents a continuous sorting device which is the first cDEP design capable of exploiting the Clausius-Mossotti factor at frequencies where i...
متن کاملMicrofluidic Mixing and Analog On-Chip Concentration Control Using Fluidic Dielectrophoresis
Microfluidic platforms capable of complex on-chip processing and liquid handling enable a wide variety of sensing, cellular, and material-related applications across a spectrum of disciplines in engineering and biology. However, there is a general lack of available active microscale mixing methods capable of dynamically controlling on-chip solute concentrations in real-time. Hence, multiple mic...
متن کاملIsolation of prostate tumor initiating cells (TICs) through their dielectrophoretic signature.
In this study, the dielectrophoretic response of prostate tumor initiating cells (TICs) was investigated in a microfluidic system utilizing contactless dielectrophoresis (cDEP). The dielectrophoretic response of prostate TICs was observed to be distinctively different than that for non-TICs, enabling them to be sorted using cDEP. Culturing the sorted TICs generated spheroids, indicating that th...
متن کاملSelective isolation of live/dead cells using contactless dielectrophoresis (cDEP).
Contactless dielectrophoresis (cDEP) is a recently developed method of cell manipulation in which the electrodes are physically isolated from the sample. Here we present two microfluidic devices capable of selectively isolating live human leukemia cells from dead cells utilizing their electrical signatures. The effect of different voltages and frequencies on the gradient of the electric field a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electrophoresis
دوره 32 18 شماره
صفحات -
تاریخ انتشار 2011